對神經退化修護功能之醫學研究領域

在神經退化修護功能方面,陳博士研究室已成功開發出以NA17純天然之植物的配方(代號:NA17- 639Ns),針對帕金森氏症、血管性癡呆症與神經退化症之治療與保護作全面強化修復與保護。由於多重靶點的治療策略搭配可通過血腦屏障的分子載體技術合併後,除了明顯的消除多巴胺氧化破壞神經及加強多巴胺回收之外,強化的缺氧耐受力及抗發炎能力也使得神經不凋萎並明顯的減少神經退化現象發生。遠超過目前已知上市之帕金森氏症相關藥物對腦部之保護功能。更重要的是所有配方皆為抗氧化物為基礎,安全無虞,對於帕金森氏症之防治復健、缺血性癡呆症、阿茲海默氏症、腦受損復健防治、等具有明確的改善治療功能。本案已將與國外大廠合作進行新藥開發及保健產品行銷,對於國內生物科技進軍國內及國際市場將是未來發展重點工作之一。

目前現有之醫學領域中,對於神經退化病症中的最常見的就是帕金森氏症、缺血性癡呆症及阿茲海默氏症的預防及治療上,主要著重於補充神經傳導物質不足之症狀型治療為主要策略。因此在藥物的使用及設計上以左旋多巴(L-dopa) 及乙醯膽鹼(Acetylcholine)等類藥物為主,以求快速減緩退化徵兆為目標。但是由於神經傳導物質之不足只是一項神經退化病症的問題徵兆之一,過多而長期的補充神經傳導物質將使神經毒素的沉積增加並且加速神經細胞的破壞,反而因此掩蓋神經退化病症的嚴重性及拖延初期發現治療恢復的有效時期並使問題加劇!加上現有神經退化藥物(包括神經傳導物質)對延緩或治療神經退化的功效並不明顯,而且若持續使用,藥物累積的副作用相當大,對使用者後期常造成不可逆的傷害。

陳博士研究室針對以上現有藥物對神經退化修護功能之缺點,已成功開發出NA17純天然之植物的配方(代號:NA17- 639Ns),針對帕金森氏症、缺血性癡呆症及阿茲海默氏症的受損功能等疾病作血管與神經的全面強化修復與保護。 其策略將使用配方中獨特的幾項新物質以加強神經細胞間隙的多巴胺回收,以減少黑質細胞的破壞及氧化,對帕金森氏症的預防及改善有莫大的功效。同時該配方以加強心血力輸出以強化腦部血液供給及代謝,藉以活化神經細胞而避免細胞凋萎。另外藉由該配方之強大耐缺氧功能及減低能量耗損功能,而使神經細胞間的自由基大量減少以達成神經保護功效。此外也藉由丹參MLB全天然抗氧化物配方將腦部中的發炎因子及自由基消除,使神經細胞受損及毒素沉積減少,並使得神經退化症狀得到正向根源性改善。在如此多靶點的功能策略下,將可對腦部之血管與神經受損功能作全面的強化修復與加強。

透過調節腦部異常放電 減低偏頭痛發作率

偏頭痛是現代人最常發生的文明病之一,舉凡壓力、睡眠不足、長時間使用電腦、天候變化或刺激性食物等等內、外在刺激因素,導致神經末梢的感受器產生神經衝動,這個衝動訊號使神經系統失去平衡和諧的狀態。簡單來說,頭痛就是腦波不正常放電所導致的神經與血管綜合性問題。

過去偏頭痛只能從活化調節腦血管收縮器方面來治療,或以交感神經阻斷劑、抗神經發炎、消炎止痛藥、類固醇類藥物等來壓制頭痛,不過長期依賴這類藥物的副作用相信不需我多加贅述,大家都很有概念了。近年來科學家發現治療偏頭痛的新焦點則是集中在調節腦神經異常放電,以徹底改善偏頭痛發作率。

我的研究團隊從天麻、款冬等幾項植物中提煉出MLB、GasZn等天然物,在歷經一年多的人體臨床實驗中應證了這個新概念。我們追蹤發現其中預兆型、缺氧型偏頭痛患者,其頭痛有效率及改善率達90%以上。這些天然抗氧化物進入體內後,開始強化循環系統,讓血管正常調節以免急速擴張,並在緩和鈉鉀離子交換的速度之後,除了抑制血小板聚集,有效去除腦部血栓血塊之外,更重要的是,調整腦神經波造成的不正常電流脈衝現象,使腦神經電波週期變長、頻率變慢,減緩並降低頭痛的發生率。

大腦海馬迴中的澱粉質瘢塊沉積

相信很多人都已經聽過阿茲海默氏症的一項重要病理特徵,就是在大腦的海馬迴裡面會出現 β型澱粉質瘢塊的沉積,而這個澱粉質斑塊的生成原因到目前為止科學仍舊沒有辦法提出任何的有利的解釋,也因此當病原根本還沒法找到的時候,那就不容易針對這個疾病做任何的有效治療。

經過很多次的研究後,我們發現 β型澱粉質瘢塊的形成起源的根本原因,是大腦海馬迴中的神經細胞因為慢性缺氧所引發金屬基質蛋白酶MMP大量生成,因而破壞神經膠質細胞的連鎖機制所致。

當大腦部位的海馬迴面臨到長期慢性缺氧的時候, 神經膠質細胞因為介於神經元細胞和血管之間,為了更有效率取得一些氧氣 ,因此只能解脫兩者之間的一些束腹。也就是神經元和神經膠質細胞之間的細胞間質,便在缺氧誘發因子HIF的刺激之下,啟動金屬質消化蛋白酶MMPs將基質間的微細膠原蛋白剪碎破壞,以加強更大的氧氣滲透率。

 只不過像這樣類似發炎的現象被啟動之後, 大腦裡扮演警衛角色的星狀膠質細胞以及像巨噬細胞的小膠質細胞microglia,就會很快的到現場去進行類似滅火及修補的動作,隨後的修補動作雖然會將這些缺口包覆起來,但同時也讓這些神經細胞發生了更嚴重的缺氧現象。

在如此因缺氧而開始破壞,然後再修補、再缺氧、再破壞….的交替循環之後,其中有一型的膠原蛋白因為被剪碎的時候,竟然使得原本可溶於水的透明狀態,轉變成不可溶狀態,因而形成像澱粉一般的纖維素,並且開始在缺氧發炎嚴重的突觸地方沉澱下來。漸漸的,這些神經細胞也就慢慢失去功能,並開始發生凋微的現象。

認識心臟

心臟是由心肌細胞、纖維組織與血管交結而成的一個器官。大體來說可分四個腔室,即左心房、右心房、左心室及右心室。左右心房的外壁較薄,主要用來收集由靜脈系統回流的血液,而以房中隔分隔開來。左右心室以室中隔分隔,其心肌壁較厚,主要藉由心肌細胞協同地以強而有力的收縮,將心房流入的血液射到動脈系統,可說是身體所有循環的原動力。若心肌有問題,則將影響其收縮力,並且造成血液循環不足,而難以應付其他器官正常運作的以應付需求(稱為心臟衰竭)。 心房與心室之間有一個瓣膜,藉以區分血液的流向,使血液不致逆流回到心房。右側的瓣膜有三瓣,稱為三尖瓣;左側則只有兩瓣,稱為二尖瓣。由於其形狀頗似教堂裡僧侶的帽子,所以也稱僧帽瓣。此外,左右心室分這些瓣膜的完整性對循環而言非常重要,若有病變(如風濕性心內膜炎)會導致開啟不暢(稱為狹窄),或關閉不完全(稱為閉鎖不全或逆流)如果持續惡化,終會引起一連串變化而造成心臟衰竭。

心臟功能運作

心臟是一個很神奇的器官,它是身體活動力的泉源。心臟每天24小時不停的以每分鐘60~100次規律地跳動著,藉由與它相連的動脈、靜脈與微血管所形成的循環系統,負擔全身各器官系統的活動,有道是牽一髮而動全身。只要心臟一停止跳動,人便會在短時間內死亡。要持續扮演這麼重要的角色,必須有絕對精密的幾種系統交替協同運作才行,這些系統就像是我們所住房子一樣,要有電力,水(血液)以及電信(神經及內分泌)等系統才能運作。

心臟電力系統

心臟就像是一個冷氣或冰箱的壓縮機一樣,是經過精密的設計,可以讓心室肌肉定時收縮,或擴張休息,以儲備能量作為下一次收縮之用。心室收縮有一種「全或無」的特點:簡單地說,心室的肌肉細胞,要麼就全部收縮,不然則就全部休息。要達到這種萬眾齊心的效果,就要有一套傳遞訊號的裝置(稱為心臟的傳導系統),將信號(微量的電流)經此系統傳至所有心室的細胞,以達到整齊劃一的收縮動作。另外,這項信號傳遞會在心房與心室交界處稍事停留,好讓心房的血液能在心室收縮的前一刻,流進心室從事最有效的收縮。

一般來說,心臟的傳導系統包括信號原始起點的竇房結、心房內傳導束、房室結及心室內的傳導束等。心室內傳導束又分為希氏束及左右束枝,在細分布到各個心肌細胞(圖23)。這個傳導系統中的任何部位發生問題,均會導致各式各樣的心律不整,包括起搏障礙與傳導障礙。

心臟血液供應

心臟除了類似壓縮機般系統的具有機械功能外,也相對的極其耗用能源。由於它本身也是一個肌肉組織,尤其是左心室強而有力的心肌系統,更有所有動力的來源,也因此它需要有自己的循環系統來大量供應氧氣與養分,並將新陳代謝所產生的廢物帶走。

心臟的血液循環包括動脈與靜脈(圖24),以及佈滿於心肌內的微血管。其中以動脈系統最重要,包括左右兩條動脈及其分支。由解剖學上來看頗像是一頂皇冠,所以便稱為冠狀動脈。左冠狀動脈從主動脈分出後不久即分為兩支,分別稱為左前降支與左迴旋支。前者沿左右心室的中間前進生長,主要供應血液給心室中隔及左心室前壁,後者則供應左心室後側壁血液。而右冠狀動脈除供應右心室外,也供應左心室的下壁及一部份心室中隔。

這些動脈若發生問題(最常見者為動脈硬化所導致的冠狀動脈病),使遠端的血液供應不足,就會引起心肌缺血,甚至壞死(稱為心肌梗塞)。這就是我們常說的冠心病了。至於心臟的靜脈系統,大抵沿著冠狀動脈分布,最後匯集到冠狀竇,再流入右心房。

心臟神經及內分泌調節

心臟的收縮功能的快慢,大都受到神經與內分泌系統的調控才能穩定地進行,以適應環境及生理循環所需。譬如,夜間睡眠時,心跳數下降,醒來時則加快。遇到緊急狀況時,能發揮身體的功能極限,以應付危險等。

一般來說,心臟沒有感覺及運動神經,只有自主神經系統分布其間,包括副交感神經(主要為迷走神經)及交感神經。前者使心跳變慢,後者則使它加快,並加強收縮力。

身體的內分泌器官,如甲狀腺與腎上腺。其所分泌的激素會直接經由血液循環送到心臟,以從事調解心臟活動的功能。有趣的是,心肌細胞本身也會分泌一些激素來作部份調解,若分泌量過多的時候,還可經由血液流到腎臟或肺臟調和全身的功能。

心臟衰竭症狀

心臟衰竭可大致分為左心室衰竭和右心室衰竭,前者是由於左心室收縮力異常,無法輸送足量的血液到主動脈,以及周邊器官組織。反而滯留在左心房和肺靜脈裡,因此肺循環的氣體交換效率降低、動脈血氧氣濃度下降,就會出現嘴唇與指甲變成紫色的青斑症。肺鬱血時,肺泡中會出現血液 成分滲出導致肺水腫與肺泡出血,因此產生血痰。

左心室衰竭時的呼吸困難,是一種又淺又快的呼吸,若患者躺下來,呼吸反而會更困難。發作時最好坐直身體,這種呼吸模式稱為-端坐呼吸,是心衰竭最重要的症狀之一。另外還會產生咳嗽、胸痛、心悸、氣喘、疲倦、失眠、焦躁等症狀。

左心室衰竭則相反的是血液鬱積在周邊靜脈,引起下肢水腫、尿量減少、腸道腫大引發食慾不振與腹部脹滿感,以及肝臟鬱血導致血肝,長期下來可能演變成肝硬化,稱為心臟性肝硬化。

心臟衰竭

心臟衰竭是指因各種原因使心臟肌肉受損或負荷過度,以致無法輸送足夠的血液供給身體之需要而產生的症狀,大多以喘來做表現。「心臟衰竭」並非指心臟完全失去功能或心臟停止。

缺氧與心臟衰竭

研究發現,當年紀過了 25 歲之後,身體的最大攝氧量每年將減少 1% 以上。換個方式說,就是當您在 65 歲時,身上所有的細胞至少就平均少掉了 40% 以上的能量。在這種情況下,怎能期待這些細胞能安分守己地扮演它們的角色呢?於是,細胞周邊的血管會開始收縮,以提高血壓,滿足細胞群些許的血氧,高血壓就開始發生;為了補充能量的匱乏,細胞會要求多補充一點食物,但是進入身體後又代謝不完,於是肥胖、高血脂也隨之發生……一個個的慢性病就這樣滾雪球般的引發,所有的初始原因就在慢性缺氧。

心律不整原因

心律不整基本上是指心臟的跳動節律或模式出了問題,可能心跳速率過慢,或者太快,也可能是心臟突然地多跳幾下,或者漏了幾次,而呈現不規則地跳動節奏等,這 些就稱為心律不整。正常狀況下,一般心肌細胞會受到外部電氣衝動的刺激,反覆進行去極化與再極化,並且持續週期性地收縮與舒張。

正常的心跳刺激是由右心房的竇房結產生,房竇結能自動產生電氣衝動刺激,往左右心房擴散,就會讓心房收縮。心房肌去極化形成的電氣衝動傳遞到房室結之後,每隔 0.1 秒左右,會經由希氏束將電氣衝動傳到左右心室。

這 一連串電器衝動,可以從心電圖清楚測得並且記錄。心電圖的一連串波形,通常會用 P開始的英文字母作記號。其中, P 波代表心房亢奮, QRS 波代表心室去極 化, T 波代表心室再極化。此外, QRS 波到 T 波為止,屬於心室收縮期(把血液送出心臟外)。 T 波結束到 Q 波為止,屬於舒張期(血液回流到心房及傳遞到心室)。 

血栓的形成三要素:纖維蛋白、紅血球、血小板

我曾經開了建築師事務所達15年左右,雖然現在已經退休不再從事這個行業,但是我仍然是具有國家執照的專業建築師資格,對於鋼筋混凝土的專業知識我想還是比一般的讀者稍微了解一些!其實鋼筋混凝土從豆腐渣等級以及像鑽石一樣硬等級的品質都有,形成這些不同等級關鍵因素其實都是來自於原料比例配比,一般來說對於鋼筋混凝土的等級,我們都以它能夠承受多少PSI壓力來區分。而形成這個等級的必要因素,簡單的說只有三項:也就是鋼筋的數量、砂石的比例、以及水泥的多寡等等,依照不同的方式混拌所形成的一項化學產物!

一般來說當鋼筋的數量稍微偏多的時候,鋼筋混凝土的強度就會相對的提高很多,當受到像地震或者是風力等等外力作用的時候,它所承受的張力以及剪力將會明顯的提高許多,相反的,如果抽掉很多鋼筋的時候,這塊鋼筋混凝土當遇到外力作用的時候就很容易會崩散破壞。

造成我們身上血栓的原料其實和鋼筋混凝土是一模一樣的, 都得具備三項主要原料,包括如同鋼筋功能的組織纖維蛋白、以及扮演砂石功能的紅血球,最後是如同水泥粉功能具有黏性的血小板分泌物,當這三項東西組合在一起的時候,就很容易形成大小不等的血栓。身體要形成一個血栓當然有很多的控制的程序,其中一樣最必要的因素,其實就是身體任何一處有破損的情況發生,才會啟動一系列的製造血栓的動作,這就好像路面有破損才會發生一系列的修補動作那個樣子。這個現象主要是由於我們身體缺氧所產生的大量自由基所造成的血管破壞,這個題目很大所以我會在其他的專欄裡面另闢說明,在這裡我們只談控制血栓結構強弱的因子。

所以要解決血栓對身體所造成的傷害,最簡單的方式並不是讓血栓形成以後再去消融它,因為這個情況根本都來不及補救缺氧的問題!而正確的是要在它的物料上面動手腳,讓血栓形成像豆腐渣工程一樣的脆弱,所以當血栓形成之後完成修補的短暫工作之後,當它脫離並進入到血液當中的時候,很快地就會像豆腐渣一樣崩解消散,不會造成身體任何的傷害,這才是最好的策略!

這個時候會有很多讀者問我,那麼該怎麼在原料上面動手腳咧?該去拿哪一個原料最先去做『偷工減料』的動作?很簡單,你沒有辦法去改變紅血球的數量,也沒有辦法去改變血小板的活性作用,那麼只能夠想辦法減少鋼筋的數量,也就是組織纖維蛋白原的濃度。這個方面在我針對某些植物進行研究時,曾經發現出有幾項相當好的成果,可能可以自己在我其他的報告中看得到!

HDAC-i對癌症的研究發現

在這單元中將以我們研究室在HDAC-i方面的研究發現,作為討論的主軸,包括我們從幾項植物中所純化的物質,以及它們對各類癌症方面的分子研究、細胞研究、動物研究,以至於在人體臨床的應用等等發現 。

另外我們還將比較它們與現有藥物在功效方面、讀理方面以及價格方面、使用概念方面等等的油缺點,並導入新一代標靶食品的全新治癌防癌觀念。

纖維蛋白分子研究領域

由於近年來科學界發現癌症的最棘手問題,是如何防止癌細胞的移轉及再生復發,而大量相關的研究也發現,其中造成癌細胞移轉的必要因素,存在於基質金屬蛋白酶 (Matrix Metalloproteinases簡稱MMP)對細胞膜的破壞,沾黏分子 (Cell Adhesion Moleculars,簡稱 CAMs) 的活性表現,以及組織纖維蛋白分子 (Fibrin) 的不當分泌等等關鍵因素。

另外一項科學及醫學界也相當棘手並且難以解決的病症:子宮內膜異位症及經痛等等現代女性疾病,也是藉由類似的分子機制包括:基質金屬蛋白酶,沾黏分子,以及組織纖維蛋白等的調節醞亂而發生高發生率的普遍存在,因此在本單元中,我們將探討如下本研究室對這兩類類主題的相關研究發現:

癌症的基質金屬蛋白酶研究

在本單元中我們將探討癌症的移轉與基質金屬蛋白酶的關係,我們研究室已發現藉由MPX-47、JR-57等類似的分子結構物質,它們能分別對MMP2、MMP9等類別的金屬基質蛋白酶進行活性的抑制,我們將介紹這類物質在對癌細胞的移轉條件下,抑制MMP活性的功能及可能的應用。

子宮內膜異位的 MMP研究

在本單元中我們將探討子宮內膜游離細胞的移轉增生過程與基質金屬蛋白酶的關係,我們研究室已發現藉由JR-57、MF-21等類似的分子結構物質,它們能分別對MMP3、MMP9等類別的金屬基質蛋白酶進行活性的抑制,我們將介紹這類物質在對子宮內膜細胞的移轉條件下抑制MMP活性的功能,及可能對子宮內膜異位症(子宮肌瘤、子宮肌腺症、巧克力囊腫等)及經痛的應用。

癌症的沾黏分子研究

在本單元中我們將探討癌症的移轉與沾黏分子的關係,我們研究室已發現藉由MPX-47、AF15等類似的分子結構物質,它們能分別對Cadhernin 、Selectin 等類別的沾黏分子進行活性的抑制,我們將介紹這類物質在對癌細胞的移轉條件下抑制,CAMs活性的功能及可能的應用。

經痛的沾黏分子研究

在本單元中我們將探討子宮內膜游離細胞的移轉沾附過程與沾黏分子的關係,我們研究室已發現藉由AF-23、AF-27等類似的分子結構物質,它們能分別對Cadhernin 、Integrin等類別的沾黏分子進行活性的抑制,我們將介紹這類物質在對子宮內膜細胞的移轉條件下抑制CAM活性的功能,及可能對子宮內膜異位症(子宮肌瘤、子宮肌腺症、巧克力囊腫等)及沾黏性經痛的應用。

癌症的組織纖維蛋白研究

在本單元中我們將探討癌症的移轉與組織纖維蛋白分子的關係,我們研究室已發現藉由FC35、LC17等類似的分子結構物質,它們能分別對Fibrinolysis 等溶纖作用分子進行活性的抑制,我們將介紹這類物質在對癌細胞的移轉條件下,抑制Fibrinolysis活性的功能及可能的應用。

經痛的組織纖維蛋白研究

在本單元中我們將探討子宮內膜游離細胞的移轉沾附過程與沾黏分子的關係,我們研究室已發現藉由PF-14、PF-57等類似的分子結構物質,它們能分別對Fibrinolysis等類別的溶纖分子進行活性的提升,我們將介紹這類物質在對子宮內膜細胞的移轉條件下抑制Fibrinolysis過程活性的功能,及可能對子宮內膜異位症(子宮肌瘤、子宮肌腺症、巧克力囊腫等)、不孕症及沾黏性經痛的相關應用。